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The propagation of acoustic waves in immersed waveguides has been previously studied
with the help of the finite element method, by using the ATILA code (A. C.
Hladky-Hennion et al., 1997 JSV 200, 519–530). In that paper, the study of the propagating
modes along immersed rectilinear wedges was presented, and the theoretical results
obtained for Plexiglas wedges agreed well with the experiments. Nevertheless, due to the
theoretical formulation, the method was not able to study radiating modes. Thus, the
present paper presents a modification of the previous method, with a view to finding either
propagating modes or radiating modes. First the formalism is presented, where an original
procedure is used to solve the finite element system. Then, wedges, the top angle of which
varies, are studied and the finite element results for the wedge wave velocity are compared
to experiments, for brass and duralumin samples.
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1. INTRODUCTION

The propagation of flexural wedge waves along a linear elastic edge in contact with air
have attracted interest because these waves are dispersionless, their propagation velocity
is lower than the Rayleigh wave velocity and the acoustic energy is confined at the tip of
the wedge guide. Thus, they have been extensively investigated theoretically and
experimentally [1–8]. More recently, different authors have demonstrated [3, 4, 6, 7] that
the water loading effect implies a decrease in the velocity of propagation of the flexural
modes. As the boundary conditions of the problem are complex, the use of the finite
element method to tackle the problem can strongly broaden the designer’s possibilities,
particularly because it allows the modelling of any cross-section geometry, by simply
building specific meshes, without any new algebraic development.

Initially, Lagasse [1] applied the finite element method to analyze the propagation of
the acoustic waves in an infinite waveguide of arbitrary cross-section in air. Lagasse’s
technique is original because the problem is reduced to a bidimensional problem, where
only the cross-section of the guide is meshed by using finite elements. It has been used in
the case of curved [5] and immersed waveguides [6]. That was an interesting innovation
because, to the authors’ knowledge, theoretical or numerical modelling of the immersed
solid wedge had not yet been developed in the general case.
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But, until now, the method was restricted to the analysis of the propagating waves along
the wedge without re-emission in the fluid. Due to the theoretical formulation, the method
was not able to study radiating modes. In the case of immersed Plexiglas samples, the
method has allowed one to determine that the limit of the wedge wave velocity in water
for large apex angles is the Stoneley–Scholte wave velocity [6, 9, 10].

This paper presents an extension of the technique to the analysis of acoustic waves in
immersed waveguides, with a view to finding either propagating or radiating modes. First,
it presents the theoretical formulation for immersed linear waveguides, where an original
procedure is used to solve the finite element system, that has been incorporated in the
ATILA finite element code [11]. Then, the wave velocity of the wedge, the top angle of
which is variable, is studied and the finite element results are compared to the experiments,
for immersed brass and duralumin wedges. The visualization of the waves propagating or
radiating in the fluid authorizes a good knowledge of the problem.

2. THEORETICAL FORMULATION

The formalism has been extensively described in references [5] and [6]. Thus, only the
main results are reproduced here. An acoustic wave, characterized by its wavenumber kz ,
is propagating along a uniform, infinite and immersed waveguide, in the z direction.
Because the section of the waveguide is uniform in the z direction, it is possible to solve
the problem with the help of a bidimensional mesh and to reconstitute the whole solution
[1, 6]. The section of the waveguide is meshed with the help of the finite element method.
In the xy-plane (see Figure 1), the whole domain contains a solid domain Ss and a fluid
domain Sf separated by the li interface line. The fluid domain is limited by the lr radiating
line. On this line, a non-reflecting condition is applied, by considering a pressure field which
is essentially monopolar [12]. The whole domain is split into elements connected by nodes.

With a view to finding the eigenmodes and considering the propagating wave in the z
direction, the final system of equations, previously described in reference [6], is
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where [K] is the stiffness matrix in the solid domain. It is written as

[K]= [K0]+ kz [K1]+ k2
z [K2], (2)

Figure 1. Traces of the finite element domains in the xy plane.
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where [K0], [K1] and [K2] are all real symmetric matrices because the material is lossless.
The [K0], [K1] and [K2] matrices are independent of kz . The stiffness matrix is calculated
by integrating over the x and y variables on the cross-section Ss . Thus, the displacement
field is z dependent but a bidimensional mesh, depending on x and y, is sufficient to take
into account the propagating wave in the z direction. [M] is the mass matrix in the
solid domain and is kz independent. [H] is the compressibility matrix in the fluid domain
and is written as

[H]= [H0]+ k2
z [H2], (3)

where [H0] and [H2] are real symmetric matrices and independent of kz . The compressibility
matrix is calculated by integrating over the x and y variables on the cross section Sf .

[M1] is the mass matrix in the fluid domain and is kz independent. [L] is the interface
matrix, which represents the coupling between the fluid and the solid on the li line and
is kz independent. Because of a non-reflecting condition on the external fluid lr line, the
[D] matrix relating the pressure normal derivative and the pressure on the surface, is
introduced in the system but is kz independent. This non-reflecting condition is valid if the
external fluid boundary is outside the near field area (=krR=�1). kr is the radial component
of the wavevector. In that case, the decreasing of the pressure field is proportional to
ejkrR/zR. rf and cf are respectively the density and the sound speed in the fluid. These two
terms are real, because the fluid is assumed to be lossless. R is the radius of the external
fluid boundary. kr is related to kz by the relation

k2 = k2
r + k2

z =v2/c2
f . (4)

From now on, all the matrices appearing in the finite element system of equation (1)
are written as functions of kz . In the previous study [6], the given wavenumber kz was real.
Thus, the modal analysis of the system has given v, the angular frequency and the
corresponding eigenvectors: U� , the vector of the nodal values of the displacement field and
P� , the vector of the nodal values of the pressure field. But, because the given wavenumber
kz was real, only the propagating modes were identified, without attenuation in the
waveguide direction. These modes correspond to a real frequency and an imaginary kr

wavenumber, because the mode is attenuated in the radial direction. This is in agreement
with the search for edge waves, the amplitudes of displacement of which are located in
the vicinity of the apex of the wedge [2]. Thus, with a view to finding either propagating
or radiating modes, the system is modified, keeping a real angular frequency. Upon using
the original variable change

kz =[(1− y2)/(1+ y2)]v/cf and kr =[2y/(1+ y2)]v/cf , (5)

equation (1) becomes

([A]+ y[B]+ y2[C]+ y3[B]+ y4[E])X� =0� , (6)
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T 1

Physical constants of the materials: density, longitudinal wave velocity (Vl ), transverse wave
velocity (Vt ), Rayleigh wave velocity (VR )

Material Density (kg/m3) Vl (m/s) Vt (m/s) VR (m/s)

Brass 8600 4348 2126 1985
Duralumin 2700 6350 3100 2894
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With a view to solving equation (7), the system is once again modified and is written as
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Finally the system size is 4N×4N, where N is the initial number of equations. For a given
real angular frequency v, the [A], [B], [C] and [E] matrices are built and the system is
solved, with the help of Lanczos classical iterative algorithms [13–15]. The eigenvalues
calculation gives the y values. Then, the kz and kr wavenumbers are deduced, by using
equation (5). The corresponding eigenvectors give the displacement field and the pressure
field in the z=0 plane. It is easy to reconstitute the displacement field and the pressure
field in the z= z0 plane by multiplying the eigenvectors by ejkzz0. Additional modes are
obtained due to the far field approximation of the radiating condition [6]. They are easily
located with the help of the pressure field in the fluid and on the external fluid boundary.
Moreover, these modes are characterized by a pressure which is greater on the external
fluid boundary than on the wedge. Thus, their eigenvalues are sufficiently separated from
those of the interesting modes; the eigenvectors are truly orthogonal. They are not of
interest in this study. Finally, the propagation modes are characterized by their wave
velocity, which is the ratio between the eigenangular frequencies and the kz wavenumber.
The calculations are performed for different values of the given real angular frequency and
for each case, the wave velocity is deduced. In the case of wedges, it is shown that the wave
velocity remains constant, when the mesh criteria are verified.
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Figure 2. Finite element mesh of the immersed wedge.

3. IMMERSED BRASS WEDGE

In this section, brass wedge samples are considered, with different apex angles, varying
by a 5° step. The physical constants of this material used for the calculation are presented
in Table 1. The analysis of the wedge in air has already been performed [6] and only the
results are reproduced in this paper, for comparison. Here, the brass sample is immersed
in water. Figure 2 presents the finite element mesh of the immersed wedge, containing a
solid part, a fluid part, the interface line li between the fluid and the solid, and the radiating
elements on the external fluid line. In all the following examples, isoparametric elements
are used, with a quadratic interpolation along the elements sides. Then, the classical l/4
criterion has to be verified, which states that the largest length of each element in a given

Figure 3. Variations of the wedge wave velocities, as a function of the apex angle for the immersed brass wedge.
Full line: finite element results of the in-air wedge; dashed lines: finite element results for the immersed wedge;
crosses: experimental results for the in-air wedge; black points: experimental results for the immersed wedge.
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Figure 4. Variations of the kz wavenumber as a function of the apex angle, for the immersed brass wedge.
Full line: Re (kzR); dashed line: Im (kzR).

mesh has to be smaller than a quarter of the wavelength for the working frequency. Upon
applying a monopolar condition on the external fluid boundary of the finite element mesh
and for a given real angular frequency, the eigenmodes are calculated.

Figure 3 presents the variations of the wedge wave velocities of the immersed brass
sample as a function of the apex angle. In the case of small apex angles, several
antisymmetrical flexural modes exist [16]. The curves reproduced in Figure 3 also show
the variations of the wedge wave velocities of the in-air brass sample [6]. They indicate
that the water loading induces a decrease in the wedge wave velocities, which is greater
for small apex angles. The agreement is good between the finite element results and the
experimental data obtained for the first mode. The acoustic technique applied to the
measurement of the wave velocity for immersed wedges is the same as the one used for
the measurement of the free edge wave velocity [17]. To verify the influence of the liquid
loading effect, the whole set-up was immersed in the fluid [7].

Figure 4 presents the variations of the kz wavenumber, multiplied by the radius R of
the external fluid boundary, as a function of the apex angle. The wavenumber is complex
and both its real and imaginary parts are reproduced.

If the wedge wave velocity is subsonic, i.e. if the apex angle is lower than approximately
60° for the first mode and approximately 30° for the second mode, the wave is propagating
in the z direction. The kz wavenumber is real and there is no remission in the fluid.

Figure 5. First antisymmetrical wedge mode of a brass sample immersed in water. Half apex angle=45°;
=krR==26·40. Normalized pressure field in a plane perpendicular to the wedge direction, with a linear scale. Full
line: finite element results; dashed line: experimental results.
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Figure 6. Variations of the wedge wave velocities as a function of the apex angle, for the immersed duralumin
wedge. Full line: finite element results for the in-air wedge; dashed lines: finite element results for the immersed
wedge; crosses: experimental results for the in-air wedge; black points: experimental results for the immersed
wedge.

If the wedge wave velocity is supersonic, i.e., if the apex angle is greater than
approximately 60° for the first mode and approximately 30° for the second mode, kz

wavenumber is complex. The wave propagates and is attenuated in the z direction, which
means that this propagating mode radiates energy in the fluid. For an apex angle equal
to 90° (half apex angle=45°), figure 5 presents a comparison between the calculated and
the measured normalized amplitude of the pressure field, radiated in the fluid, in a plane
perpendicular to the wedge direction. It shows a good agreement between the two curves.
The direction of the maximum of amplitude is approximately determined by an angle equal
to 67·5° with respect to the antisymmetrical plane.

4. IMMERSED DURALUMIN WEDGE

Duralumin wedges, with different apex angles are studied. In Table 1 their physical
constants are given. The same meshes as previously are used and only the material
properties are changed in the data files. Figure 6 presents the variations of the wedge wave
velocities of the immersed duralumin sample as a function of the apex angle. In this figure,
the variations of the wedge wave velocities of the in-air duralumin sample are reproduced
and show the effect of the water loading. The agreement is good between the finite element
results and the experimental data obtained for the first mode, when the apex angle is
smaller than approximately 55°. It is difficult to get experimental results for an apex angle
greater than 60° because signals which correspond to the wedge wave and to the
Stoneley–Scholte wave are so close that they are mixed. Larger samples would be necessary
to get additional data for higher tip angles. Figure 7 presents the variations of the kz

wavenumber, multiplied by the radius R of the external fluid boundary, as a function of
the apex angle. This figure is similar to Figure 4, which has been obtained for brass
immersed wedges. In the case of duralumin samples, the wedge wave velocity becomes
supersonic when the apex angle is greater than approximately 45°. Once again, the
theoretical results confirm the existence of propagating and radiating edge modes, because
of the complex kz wavenumber. Figure 8 presents the normalized amplitude of the pressure
field in a plane perpendicular to the wedge direction, for a right duralumin sample. Once
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Figure 7. Variations of the kz wavenumber as a function of the apex angle, for the immersed duralumin wedge.
Full line: Re (kzR); dashed line: Im (kzR).

again, the finite element results agree well with the experiments and it shows that the
direction of the maximum of amplitude is approximately determined by an angle equal
to 65° with respect to the antisymmetrical plane, which is close to the angle for a brass
sample. This angle is approximately independent of the wedge angle.

5. COMMENTS ON THE RADIAL COMPONENT OF THE WAVENUMBER

From the finite element calculations, it was evident that in the subsonic regime (i.e., the
regime for which the velocity of the wedge wave, V, is smaller than the velocity of
propagation in water, Vw ), the radial component (kr ) of the wavenumber is imaginary:
Im (kr ) is positive which gives rise to an evanescent behaviour of the propagating edge
waves in the radial direction. The pressure field is exponentially decaying as a function
of the distance to the tip and there is no re-emission in the fluid. This agrees with the fact
that the edge wave is confined near the tip of the wedge.

When the wedge wave velocity V is larger than Vw , the calculations exhibit the existence
of a propagating radial component, the amplitude of which increases with the distance
from the tip of the wedge (Im (kr )Q 0). The study of the origin of this radial increasing
is now in progress. A similar anomaly was observed for the generalized Rayleigh wave
[18–20]. In fact, a complex angular frequency should be considered instead of a real angular
frequency, because of the re-emission in the fluid. Because equation (8) is solved for a given

Figure 8. First antisymmetrical wedge mode of a duralumin sample immersed in water. Half apex angle=45°;
=krR==35·67. Normalized pressure field in a plane perpendicular to the wedge direction, with a linear scale. Full
line: finite element results; dashed line: experimental results.
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real angular frequency v, the imaginary part of relation (4), binding the kz and the kr

wavenumbers, leads to a negative imaginary part of the radial wavenumber (Im (kr )Q 0).
Nevertheless, the method described above gives a precise account of the experimental

results, which demonstrates the efficiency of the model.

6. CONCLUSION

In this paper, the propagation of wedge waves along immersed wedges, with the help
of the finite element method, has been studied. The formalism has been previously
presented [6] but it was restricted to the study of propagating waves along rectilinear
wedges. This paper presents a way to solve the finite element system with a view to
obtaining both propagating and radiating wedge waves. The agreement between the finite
element results and experiments demonstrates the efficiency of the model.

Due to the study of several samples, made of different materials, general trends can be
stated, as follows.

When the samples are in air, the limit of the wedge wave velocity for large apex angles
(90°) is the Rayleigh wave velocity (VR ).

When the samples are immersed in water, the effect of the water loading induces a
decrease in the wedge wave velocity, particularly if the apex angle is small.

If the resulting mode is subsonic, it corresponds to a mode which is propagative in the
wedge direction and evanescent in the radial direction, and the displacement of which is
located at the tip of the wedge. This mode is found for brass samples, when the apex angle
is lower than approximately 60°, and for duralumin samples, when the apex angle is lower
than approximately 45°. For Plexiglas samples [6], because the Rayleigh wave velocity is
lower than the sound speed in water, wedge waves are subsonic and for a 90° apex angle,
it was shown that the wedge wave velocity limit is the Stoneley–Scholte wave velocity
[9, 10]. This would be the case for any other material, when the Rayleigh wave velocity
is lower than the sound speed in water.

If the resulting mode is supersonic, it is attenuated in the direction of propagation. In
that case, for large apex angles, the wedge wave velocities of in-air and in-water samples
are close to the Rayleigh wave velocity.

Now, the authors’ next aim is to find another way to solve the problem, with a view
to considering complex angular frequencies for radiating modes. Then, a further aim is
to study the effect of a defect on the wedge or the conversion of modes at the end of the
sample [21]. In that case, a transient analysis of the coupled fluid–solid problem has to
be performed with the help of the finite element method. Work is now in progress to
incorporate this in the ATILA finite element code.
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